to confirm P lipase data on oils containing predominantly 18:1 as the unsaturated fatty acid. More information is needed concerning the specificity of GC lipase, especially as to the relative rates of lipolysis of TG's containing other cis unsaturated acids and of

TGs containing 18:1 in different positions. However, present evidence indicates that GC lipase is highly specific for *cis* 18:1 and that in conjunction with other methods the enzyme can be used to study the structure of TG's.

ACKNOWLEDGMENT

The sample of Congo palm oil and an analysis of the component TG's were the gift of Dr. G. Jurriens, Unilever, Ltd. Supported in part by Public Health Service Research Grant AM-02605-07 from the Institute of Arthritis and Metabolic Diseases.

REFERENCES
1. Ackman, R. G., and R. D. Burgher, JAOCS 42, 38-42 (1965).
2. Alford, J. A., and D. A. Pierce, J. Food Sci. 26, 518-524 (1961).
3. Alford, J. A., D. A. Pierce and F. G. Suggs, J. Lipid Res. 5, 390-394 (1964).
4. Coleman, M. H., "Advances in Lipid Research," Vol. 1, Academic Press, New York, 1963, p. 1.
5. Crossley, A., I. P. Freeman, B. J. F. Hudson and J. H. Pierce, J. Chem. Soc. 760-764 (1959).
6. Gruger, E. H., Jr., R. W. Nelson and M. E. Stansby, JAOCS 41, 662-666 (1964).
7. Harper, W. J., D. P. Schwartz, and I. S. El Hagarawy, J. Dairy Sci. 39, 46-50 (1956).
8. Jensen, R. G., and M. E. Morgan, *Ibid.* 42, 232-239 (1959).
9. Jensen, R. G., J. Sampugna and R. L. Pereira, Biochim. Biophys. Acta 84, 481-483 (1964).
10. Jurriens, G., B. DeVries and L. Schouten, J. Lipid Res. 5, 366-368 (1964).
11. Jurriens, G., Personal communication to the author.
12. Mattson, F. H., and R. A. Volpenhein, J. Lipid Res. 5, 381-296 (1962).
13. Vander Wal, R. J., "Advances in Lipid Research," Vol 2, Academic Press, New York, 1964, p. 1.

Application of Computer Methods to the Calculation of Triglyceride Structure¹

EDWARD G. PERKINS, The Burnsides Research Laboratory, and ANDREW V. HANSON, The Digital Computer Laboratory, The University of Illinois, Urbana

Abstract

A digital computer method for the calculation of triglyceride structure using a FORTRAN program has been developed. The results of several methods of calculation and hypothesis of glyceride structure were compared with values determined experimentally. The comparison obtained with the random, restricted random, 1.3random-2-random distribution hypotheses, as well as other proposed hypotheses, indicated that the 1,3-random-2-random hypothesis best approximated the values obtained experimentally by other investigators.

Introduction

EXPERIMENTS DESIGNED to examine the effect of di-etary fat on the glyceride structure of carcass or depot fat yield large amounts of data which must be transformed into a form suitable for interpretation. Computer methods of rapid calculation become especially desirable where a long or relatively complex series of calculations must be performed repeatedly on a small amount of data. Such is the case in many of the methods for the estimation of triglyceride structure, especially when comparisons between theories of triglyceride distributions are to be made. In this report we wish to describe a FORTRAN program for the calculation of triglyceride distribution.

Procedure

A digital computer program (FORTRAN) may be written for the purpose of performing straightforward calculations since the FORTRAN machine language allows algebraic formulas to be represented in familiar form. A computer program translates the formulas, when punched in correct form, into the actual computer instructions which govern the calculations.

The FORTRAN method provides for five basic operations: Each of these operations is represented by a distinct symbol (1):

Addition	+
Subtraction	-
Multiplication	*
Exponentiation	**
Division	1

In addition, provisions are also made for certain mathematical functions. Every function has a preassigned name. In order to make use of any function (square root or exponentiation), it is only necessary to write the name of the function followed with an expression enclosed in parenthesis. The computer will then carry out the named operation.

Several versions of FORTRAN are available. The version employed in the work reported used the Control Data Corporation 1604 computer (which is capable of storing about 32,000 items).

Before one can solve a problem using this type of computer it must be outlined using a number of statements. These statements control and outline the necessary arithmetic operations, the input of data, and the final printing out of results according to a predetermined format. Statements concerning the order of execution and statements which provide additional information about the problem are included. This information in FORTRAN language is then punched out on tape using the FORTRAN 60 compiler. The program, which is now on punched tape, contains the complete instructions necessary for the solution of the problem. Sub-programs containing instructions not in the main program for the detailed solutions of the glyceride distribution equations are then written.² The main program is reproduced in Table I.

Mathematical equations³ for the calculation of a random distribution are shown in Table II. The

¹ Presented at the AOCS meeting, April 1965, Houston. ² A very limited number of the complete computer programs are avail-able from the authors. ³ S = saturated fatty acids; U = unsaturated fatty acids. S₃, S₂U, SU₂ and U₃ represent the four possible types of glycerides in terms of their S and U content without regard to position. SUS, SSU, USU and UUS represent structurally the varieties possible in terms of S and U content when the position is indicated in the sequence. SUS and SSU are there-fore isomers comprising S₂U.

=

TABLE I

Fortran Computer Program

50	PROGRAM FATS DIMENSION DENT (71), EXPER (8), RAND (8), RSTRAN (8), 1 GUN (8), OTTOLD (8), OTTFCA (8), OTTFCB (8), OTTFCC (8), 2 OTTCUB (8) PRINT 1000		PRINT 108, S, ES24, CALL FULERR (OTT PRINT 109, S, ES23, CALL FULERR (OTT GO TO 50
	READ 98, DENT PRINT 100, DENT	98 99	FORMAT (1X, 71A1) FORMAT (2F6.2, /8H
	N = 1	100	FORMAT (/1X, 71A1
	IF (SENSE SWITCH 2) 12, 9	101	2X))
9 10	$\frac{\text{IF (SENSE SWITCH 1) 10, 11}}{N = 8}$	102	1H - 2X, 18(2X, F6.2)
	GO TO 12	103	FORMAT (/20H RES
$11 \\ 12$	$ \begin{array}{c} N = 4 \\ \text{READ 99, S, S2, (EXPER (I), I = 1, N)} \end{array} $	104	FORMAT (/20H GUN
с	IF NEITHER SWITCH ONE NOR SWITCH TWO IS SET	105	FORMAT ($/20H$ 1–3
	DATA IS EXPECTED IN THE FOLLOWING FORM— LINE OR CARD 1—SPACE, 71 CHARACTER	106	18(2X, F6.2, 2X)/) FORMAT (/20H CUE
	IDENTIFICATION LINE OR CARD 2-8 THEN S2 (FORMAT 2F6.2)	107	2X, 1F6.2, 2X, 8(2X, FORMAT (/20H CU)
	IN PERCENT	102	2X, 1F6.2, 2X, 8(2X,
	PERCENT (FORMAT 4F6.2).	108	2X, 1F6.2, 2X, 8(2X,
	IF SWITCH ONE IS SET. CARD OR LINE 3 MUST	109	FORMAT (/20H 1-3, $F6.2, 13X, 1H \pm F6.2,$
	ALSO CONTAIN SUS, SSU, USU AND UUS IN DEPOCENT, THUS LINE OR CARD 3 IS READ WITH	110	FORMAT (6X, $8H \neq M$ 4H $\pm 82 \pm 6X$ 3HG83
	FORMAT 8F6.2.	1000	3HGU37X, 3HSUS7X
	IF SWITCH TWO IS SET, THE SECOND CARD OR	1000	ACIDS IN GLYCERI
	LINE IS EXPECTED TO CONTAIN SIX BLANKS, SIGNIFYING NON-AVAILABILITY OF DATA.		END RETURN
	IF S2 IS KNOWN TO BE HIGHER THAN THE		END FUNCTION SCALE
	PREDICTED RANDOM VALUE, AS IN PIG FAT, BUT THE EXACT VALUE IS NOT KNOWN JISE		$\begin{array}{c} \mathrm{SCALE} = 0.01 \\ \mathrm{RETURN} \end{array}$
	-1.0 AS THE VALUE FOR S2.		END SUBROUTINE APPI
	INSERT G83 APPROXIMATION HEREIF (EXPER (1)) 23, 23, 24		
24 21	IF (82) 19, 21, 20 CALL EVALST (S. EXPER (1), OTTOUR, E823)		DIF1 = ABSF (FAK) IF (DIF1) 1, 300, 1
61	CALL EVALS2 (S, ES23, OTTOLD)	1	X = X + SCALE DIF2 = ABSF (FAK
	$\begin{array}{c} \text{STW0} = \text{ES23} \\ \text{GO TO } 22 \end{array}$	9	IF (DIF1 – DIF2) 3
20	CALL EVALST (S, EXPER (1), OTTCUB, ES23) CALL EVALS2 (S, S2, OTTOLD)	4	X = X + SUALE IF (100. – ABSF (X
	STWO = S2	10 12	IF (MARK) 13, 13, 13, X = 1000.
19	CALL EVALST (S, EXPER (1), OTTCUB, ES23)	13	RETURN MARK - 1
	$STWO = 2. \bigstar S - ES23$ CALL EVALST (S. STOW, OTTOLD)		X=0.0 DIE2 - ADSE (EAK
	GO TO 22 (ALL DANDON (S. DAND)		GO TO 3
22	CALL EVALER (S, EXPER (1), RSTRAN)	11	D1F1 = D1F2 D1F2 = ABSF (FAK
	CALL EVAGUN (S, GUN) CALL EVALST (S, RAND (1), OTTFCA, ES21)	3	$\frac{1F (DIF1 - DIF2) 2}{SCALE - SCALE}$
	CALL EVALST (S, GUN (1), OTTFOB, ES22) CALL EVALST (S, OFFOID (1), OTTFOC FS24)	0.01	GO TO 2
	PRINT 101, S, S2, (EXPER (I), $I = 1$, N)	300	RETURN
	PRINT 102, S, RAND PRINT 103, S, RSTRAN	301	PAUSE 1 IF (SENSE SWITCH
	CALL FULERR (RSTRAN, EXPER, RAND, N) PRINT 104, S. GUN	C -	SET SWITCH ONE
	CALL FULERR (GUN, EXPER, RAND, N) PRINT 105 S STWO OTTOLD		RETURN
	CALL FULERR (OTTOLD, EXPER, RAND, N)		END
	PRINT 106, S. ES21, OTTFUA CALL FULERR (OTTFCA, EXPER, RAND, N)	X REMA	RK, DATA
	PRINT 107, S, ES22, OTTFCB CALL FULERE (OTTFCB, EXPER, BAND, N)	••	
	Charles & Charles (Charles (Ch		

^a Calculation of X and estimation of S-2.

FORTRAN language employed in the sub-program is very similar to that used in the standard mathematical expression (Table II).

A calculation of restricted random distribution may be carried out using the method of Kartha (2) or the modification of Kartha's method as published by Hammond and Jones (3). This calculation is represented in Table III. The sub-program written in FORTRAN language is quite similar and is illustrated in Table III.

VanderWal (4), Richardson (5) and Coleman (6) have proposed another distribution theory, known as the 1,3-random-2-random distribution. This theory states that: the acyl groups occupying the C-2 hydroxyl of the glycerol moiety are distributed therein at random; the 1- and 3-positions of the glycerol moiety are identical and are occupied by identical kinds and proportions of fatty acids distributed within these groups at random.

Still another version of this distribution was later presented by Gunstone (7); this version stated that the C-2 hydroxyl group is preferentially acylated

	PRINT 108, S, ES24, OTTFCC
	CALL FULERR (OTTFCC, EXPER, RAND, N)
	PRINT 109, S, ES23, OTTUUE
	CO TO 50
0.9	FORMAT (1X 71A1)
99	FORMAT (2F6.2, /8F6.2)
100	FORMAT (/1X, 71A1//)
101	FORMAT (20H EXPERIMENTAL VALUES 10(2X, F6.2,
	2X))
102	FORMAT (20H COMPLETE RANDOM 2X, F6.2, 9X,
	$1H \sim 2X, 18(2X, F0.2, 2X)/)$
103	111 ± 97 91 117 11 ± 16 9 1 ± 17 7(9X E6 9 2X)/)
104	FORMAT (/20H GUNSTONE THEORY 1 2H \pm F6.2. 2H \pm
104	7X 13H - 8(2X, F6.2, 2X)/)
105	FORMAT (/20H 1-3 RAN., 2 RANDOM 2(2H ★ F6.2, 2H ★)
	18(2X, F6.2, 2X)/)
106	FORMAT (/20H CUBIC, FULL RANDOM 2H ★F6.2, 2H★
	2X, 1F6.2, 2X, 8(2X, F6.2, 2X)/)
107	FORMAT (/20H CUBIC, GUNSTONE I 2H \times F0.2, 2H \times
100	2X, IF6.2, $2X$, $8(2X, F0.2, 2X)/)FORMAT ()00H OUPTO OLD 1-2 2 RAN 2H \pm F6.2 2H\pm$
109	2X 1 E6 2 2X 8(2X E6 2 2X)/)
109	FORMAT (/20H 1-3, 2 RANDOM CUBIC 2H ★F6.2, 4H★
	$F_{6,2}$, 13X, 1H \pm F_{6,2}, 1H \pm 1X, 7(2X, F_{6,2}, 2X)/)
110	FORMAT (6X, $8H \bigstar METHOD \bigstar 6X$, $4X$, $3H \bigstar S \bigstar 7X$,
	$4H \pm S2 \pm 6X$, $3HGS3 17X$, $4HGS2U6X$, $4HGSU26X$,
	3HGU37X, 3HSUS7X, 3HSSU7X, 3HUSU27X, 3HUUS//)
1000	FORMAT (1H137X, 43H DISTRIBUTION OF FATTI
	AUIDS IN GLICERIDES (SOA)
	RETURN
	END
	FUNCTION SCALE (BLANK)
	SCALE = 0.01
	RETURN
	END
	N - 0 U
	$X \equiv 0.0$ MARK $= 0$
	DIFI - ABSF (FAKEF (A B X))
	IF (DIF1) 1, 300, 1
1	$\mathbf{X} = \mathbf{X} + \mathbf{SCALE}$
	DIF2 = ABSF (FAKEF (A, B, X))
	IF $(DIF1 - DIF2)$ 3, 301, 2
2	X = X + SCALE
10	IF(100, -ABSF(A)) 10, 10, 11
12	X = 1000
	RETURN
13	MARK - 1
	X = 0.0
	DIF2 = ABSF (FAKEF (A, B, X))
	GU TU 3 DIE1 - DIE2
11	DIFI = DIFZ DIFO = ADSE (FAVEE (A D V))
	$D_{1F2} = AD_{SF} (FAREF (A, B, A))$ IF (DIF1 - DIF2) 201 301 2
3	SCALE = -SCALE
	GO TO 2
201	$\mathbf{X} = \mathbf{X} - \mathbf{SCALE}$
300	RETURN
301	PAUSE 1
C	IF (SENSE SWITCH I) 3, 2 SEM SWIDDLE ONE IN MULE NECONTRE SOLUTION 19
0	SET SWITCH UNE IF THE REGATIVE SUBULION IS
	RETURN
	END
	END
X	
REMA	RK, DATA
••	
• •	

by C_{18} unsaturated acids; the C-1,3 hydroxyl groups are subsequently acylated by all remaining acids and by any C_{18} unsaturated acid not required at C-2. Within these limits, the distribution at each position is statistical. The mathematical expression of the equations required for the calculation of glyceride composition using this theory as well as the FOR-TRAN sub-program employed is given in Table IV.

The 1,3-random-2-random theory has repeatedly received experimental confirmation (8-10) when applied to animal and plant depot fats. A computer sub-program for the calculation of this distribution would be especially useful. The equations which describe one version of this distribution ("X-cubic"), as given by VanderWal (11), are illustrated in Table V. These formulas may be translated into a FORTRAN sub-program (Table V) and the values for X calculated by solution of the cubic equation by the special sub-program included at the end of Table I. Another method of calculation for the 1,3random-2-random hypotheses originally published by

TABLE II

Mathematical notation	Fortran sub-program
$\begin{array}{l} & = S^3/10,000 \\ S_2 U = 2 \ S^2 U/10,000 \\ S_2 U = 2 \ S^2 U/10,000 \\ SU_2 = 2 \ SU^2/10,000 \\ SU_2 \ (USU) = \ SU^2/10,000 \\ U_3 = U^3/10,000 \end{array}$	Subroutine random (S,Ran) Dimension ran(8) U = 100, -S Ran (1) = S*S*S/10,000 Ran (4) = U*U*U/10,000 Ran (5) = S*S*U/10,000 Ran (6) = Ran(5)*2 Ran (7) = U*U*S/10,000
	$\begin{array}{l} \operatorname{Ran} (8) = \operatorname{Ran} (7)^{*2} \\ \operatorname{Ran} (2) = \operatorname{Ran} (5) + \operatorname{Ran} (6) \\ \operatorname{Ran} (3) = \operatorname{Ran} (7) + \operatorname{Ran} (8) \\ \operatorname{Return} \\ \operatorname{End} \end{array}$

TABLE III

Calculation of Restricted	Random Distribution
Mathematical notation (3)	Fortran sub-program
$\begin{array}{l} \text{GSa,GSaU,GSUs, and GUs} = \\ \text{a-d respectively} \\ \text{S} = \text{Mol porportion of saturated} \\ \text{acids and } \text{a} + \text{b} + \text{c} + \text{d} = 1 \end{array}$	Subroutine Eval RR (S,A,G) Dimension G (8) SS = S/100 AA = $A/100$ Arg = $(SS - 1)*(4.*AA - SSS - SSS - 1)*(4.*AA - SSS - SSS - 1)*(4.*AA - SSS - SSS$
In the equilibrium : GU3+GS2U = 2GSU2; db/c2 - K	$\begin{array}{c} 3.^{+}88 - 1.)\\ \text{if}(\arg) \ 251, 250, 250, \\ \text{G}(2) = ((3/2) + (1 + 88 - (250)) \ \text{G}(1) = \text{A} \end{array}$
$\mathbf{K} = \frac{1}{2} \mathbf{K}$ multiple \mathbf{K} is not restricted therefore	2*AA - SQRTF(ARG)) * 100 G(3) = (3 * S - 2 * G (2) - 3.*A
$\begin{array}{c} GS_2U = b = 3/2 \ (1 + S - 2a) - 3/2 \\ GSU_2 = c = 3S - 2b - 3a \\ GU_3 = d = 1 + 2a + 3a \end{array}$	G(4) = 100, + 2, + * A + G(2) - 3, *S G(5) = G(2)/3 G(6) = G(5) 2 G(7) = G(3)/3
b-3S	$\begin{array}{l} \widetilde{G}(8) = \widetilde{G}(7)/2 \\ \operatorname{Return} \\ (251) \operatorname{ARG} = -\operatorname{Arg} \\ \operatorname{Pairt} 252 \end{array}$

VanderWal (4) similar to that shown in Table V is illustrated in Table VI.

The values for varying percentages of glyceride types and isomeric forms of triglycerides predicted by any particular theory can thus be readily calculated. These values and their deviations from both the values obtained experimentally, and from those predicted by random distribution can then be printed in an easily readable format on a line printer attached to the computer. Using manual methods, the calculation of five different distributions for any given fat required a considerable amount of time; using the FORTRAN methods described above, the time

	TABLE IV									
	Calculation of Gunstone's Distribution (Theory 1)									
<u></u>	Mathematical notation (7)									
%S S3 S2U SU2 U3										
<33 ½ 33 ½ -66 ½	} 0	$\left(\frac{-3S}{20}\right)^2$	$\frac{3\mathrm{S}(3\mathrm{U}100)}{200}$	$\left(\frac{3U-100}{20}\right)^2$						
>66%	100-3U	3U	0	0						
	For	rtran sub-pro	ogram							
Fortran sub-program Subroutine Evagun (S,Gun) Dimension Gun (8) If ($S - 200./8.150, 150, 150, 151$ (150) U = 100 S Gun (1) = 0.0 Gun (2) = ($3.*S/20.)^{*2}$ Gun (3) = $3.*S^*(3.*U-100.)/200.$ Gun (4) = (($3.*U - 100.)/20.)^{*2}$ (152) Gun (5) = Gun (2) Gun (6) = 0.0 Gun (7) = 0.0 Gun (8) = Gun (3) Return (151) U = 100 S.*U Gun (3) = 0.0 Gun (3) = 0.0 Gun (3) = 0.0 Gun (3) = 0.0 Gun (4) = 0.0 Go to 152 End										

TABLE V Calculation of 1,3-Random-2-Random Distribution ("X-Cubic" method)

(12 0 0 0 0 0	
Mathematical notation (11)	Fortran sub-program
$R_{,} = (S + X/2) (S - X) (S + X/2)/10,000$	X2 = X/2
$R_2 = R_5 + R_6$ $R_3 = R_7 + R_8$	UU = 100 - S R(1) = (S + X2)*(S - X)*
$R_4 = (UU - X/2)(UU + X)$	$R(7) = (UU - X2)^* (S - X)^*$
(UU + X/2)/10,000 R ₅ = (S + X/2)(UU + X) R ₅ = (S + X/2)(UU + X)	R(6) = 2.*(8 + X2)*(8 - X)*
$R_6 = \frac{(S + X/2)}{(S + X/2)} \frac{(S - X)}{(S - X)}$	$R(5) \coloneqq \frac{(UU - X^2)}{(S + X^2)} \frac{(UU - X)^*}{(UU - X)^*}$
$R_{7} = (UU - X/2)(S - X)$ (UU - X/2)/10 000	R(8) = 2.*(UU - X2)*(UU + X)*(S + X2)/10.000
$R_{s} = (2) (UU - X/2) (UU + X) (S + X/2) (10,000)$	R(4) = (UU - X2) * (UU + X) * (UU - X2) / 10,000
$R_1 = R_8$ are S ₃ , S ₂ U, SU ₂ , U ₃ , SUS, SSU and UUS	R(2) = R(5) + R(6)
S = % S in triglycerides (Total S)	R(3) = R(7) + R(8) S and B are read into the computer
(Total U)	as data: Y may splaylated from the subjection
X is found from $(S + X/2)/(S - X)(S + X/2)/10,000 - B = 0$ where B is the % 82 found	equation by a separate sub-
(Total U) X is found from $(S + X/2)(S - X)(S + X/2)/10,000 - B = 0$ where B is the %Ss found.	as data: X was calculated from the cubic equation by a separate sub- program.

required for the computation was about 7 seconds; approximately 30 seconds were required to print out the data in tabular form.

Results and Discussion

A digital computer program was developed from the existing mathematical methods for the calculation of the triglyceride distribution within a fat. The results obtained were then compared with those obtained experimentally on fats having differing percentages of saturated fatty acids. The following theories were compared:

- A) Complete random distribution (Table II).
- B) Restricted random distribution (Table III).
- C) The theory which has been presented by Gunstone (7) as a modification of restricted random distribution (Table IV).
- D) The method of calculation for the 1,3-random-2-random hypothesis originally presented by VanderWal (4) (Table V).
- E) This method yielded the same results as method (D) but employed the program outlined in Table VI derived from the "X cubic" set of equations. The values for the percentages of S_3 and S as found by experiment are required and the amount of S in the 2 position of the glycerol moiety is estimated. If the amount of S in the 2 position obtained by estimate agrees with that determined experimentally, then the final percentages of glycerides are in agreement with those calculated by method D. If the estimate differs then somewhat different results are obtained.

TABLE VI	
TABLE VI	

Calculation	of 1,3-Random-2	-Random	Distribution	(Original	method)
Restaurant and a second s					

a = % S (total)Subroutine Eval S2 (A, B, Q) $b = % S$ in 2 positionDimension Q (8) $c = b(100)/3a$ $C = R*100./(3.*A)$ $d = 100 - e$ $D = 100 O$ $e = (d)(a)/100$ $E = D*A/100.$	Mathematical notation (4)	Fortran sub-program
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	a = % S (total) b = % S in 2 position c = b(100)/3a d = 100 - e e = (d) (a)/100 f = 1.5 e g = 100 - b h = f2/100 i = g3/100 S3 = (b) (h)/100 USU = (b) (i)/100 USU = (b) (i)/100 UUU = (100 - b) (i)/100 UUU = (100 - b) (j)/100 UUS = (100 - b) (j)/100	Subroutine Eval S2 (A,B,Q) Dimension Q (8) $C \equiv R*100, /(3,*A)$ $D \equiv 100, -C$ $E \equiv D*A/100.$ $F \equiv 3,*E/2.$ $G \equiv 100, -F$ $H \equiv F*F/100.$ AI = G*G/100. $AJ \equiv 100, -H - AI$ $Q(1) \equiv B*AI/100.$ $Q(5) \equiv (100, -B)*AI/100.$ $Q(6) \equiv B*AJ/100.$ $Q(6) \equiv B*AJ/100.$ $Q(6) \equiv (100, -B)*AI/100.$ $Q(4) \equiv (100, -B)*AI/100.$ $Q(4) \equiv Q(5) + Q(6)$ $Q(3) \equiv Q(7) + Q(8)$ Return End

				TABLE V	711					
Distribution of Triglycerides in Chicken Fat										
Method	S	S2 a	S_3	S2U	SU2	Us	SUS	SSU	usu	UUS
Experimental Values (8) Complete Random Restricted Random Gunstone, Theory 1 1-,3-Random, 2-Random	$31.30 \\ 31.30 \\ 31.30 \\ 31.30 \\ 31.30 \\ 31.30 \\ 31.30 $	26.12	3.00 3.07 3.00 0.00 3.00	$19.00 \\ 20.19 \\ 20.27 \\ 22.04 \\ 20.19$	50.00 44.32 44.36 49.81 44.52	$\begin{array}{c} 28.00\\ 32.42\\ 32.37\\ 28.14\\ 32.29 \end{array}$	$10.00 \\ 6.73 \\ 6.76 \\ 22.04 \\ 8.49$	$9.00 \\13.46 \\13.51 \\0.00 \\11.70$	$12.00 \\ 14.77 \\ 14.79 \\ 0.00 \\ 11.42$	$38.00 \\ 29.55 \\ 29.58 \\ 49.81 \\ 33.11$
("X-Cubic" method)	31.30	26.12	3.00	20.19	44.52	32.29	8.49	11.70	11.42	33.11

* %S in the 2 position of the glycerol moiety.

TABLE VIII

Distribution of Triglycerides in Linseed Oil										
Method	s	S2 ª	Sa	S_2U	SU2	U3	SUS	SSU	USU	UUS
Experimental Values (8) Complete Bandom	7.80	0.00	0.00	0.00	26.00	74.00	0.00	0.00	4.00	22.00 13.26
Restricted Random	7.80		0.00	1.70	20.00	78.30	0.57	1.13	6.67	13.33
1-,3-Random,-2-Random	7.80	0.00	0.00	1.37 1.37	20.66 20.66	77.97	1.37 1.37	0.00	0.00	20.66
('X-Cubic'' method)	7.80	0.00	0.00	1.37	20.66	77.97	1.37	0.00	0.00	20.66

a %S in the 2 position of the glycerol moiety.

A series of calculations were made on several representative fats containing varying amounts of saturated fatty acids. The computer program was applied to the calculation of the glyceride distribution of 70 different fats representing 116 analyses which have been published by other investigators. The results of two such comparisons (chicken fat and linseed oil) are illustrated in Tables VII and VIII. The comparisons obtained indicated that the 1,3random-2-random hypothesis of VanderWal (4) and Coleman (6) best approximated the values obtained experimentally by other investigators. The suggestions put forth by Gunstone (7) also yielded good approximations of the actual results when glyceride types were considered, but diverged when values for isomeric forms were compared. Although complete data are not available for most fats reported in the

literature (in most cases only the percentages of glyceride types are available), this agreement was found to be generally true for those fats where complete data were available as well as for those where only the percentages of glyceride types has been reported.

REFERENCES

McCracken, D. D., "A Guide to FORTRAN Programming," J.
 Wiley and Sons Inc., New York, 1964.
 Kartha, A. R. S., "Studies on the Natural Fats," Vol. 1, p. 103, published privately by the author at Ernakulam, India, 1949; also JAOCS 30, 326 (1953).
 Hammond, E. G., and G. V. Jones, JAOCS 37, 376 (1960).
 VanderWal, R. J., JAOCS 37, 18 (1960).
 Richardson, A. S., 1957, Footnote in reference 4.
 Coleman, M. H., JAOCS 38, 685 (1961).
 Gunstone, F. D., Chem. Ind. 1214 (1962).
 Youngs, C. G., JAOCS 38, 62 (1961).
 Jurriens, G., B. DeVries and L. Schouten, J. Lipid Res. 5, 366 (1964).

- 9. JURTIERS, G., B. DEVITES and E. Schouten, J. Lepid Lett. 9, (1964).
 10. Luddy, F. E., S. G. Morris, P. Magidman and R. W. Riemenschneider, JAOCS 32, 522 (1955).
 11. VanderWal, R. J., JAOCS 40, 242 (1963).

Structure of the Intestinal Mucosa and Lymph Glycerides of Rats after Absorption of Fats Containing Elaidic Acid

J. CLEMENT, G. LAVOUE and G. CLEMENT

Laboratoire de Physiologie Animale et de la Nutrition, Dijon, France

Abstract

Elaidic acid was given to rats either as free acid or triglyceride (trielaidin or mixed glycerides transesterified with elaidic acid). The intestinal mucosa and lymph triglycerides were isolated and their structure determined by pancreatic lipase. The elaidic acid level was determined by GLC using capillary columns.

Results showed a marked tendency for elaidic acid to be located at the external positions of the triglyceride molecule beginning with the lymph. The results are discussed in relation to the absorption process and triglyceride synthesis.

Introduction

IN PREVIOUS WORK made in cooperation with Raulin $\mathbf{1}$ (6, 7), we have demonstrated that when rats and pigs are fed rations containing elaidinized peanut oil, the *trans* fatty acids are found predominantly in the external positions of the depot triglycerides (TG). This positional specificity occurs in spite of the fact that the distribution of saturated and unsaturated acids between the internal and external positions is different in these two species.

It seemed worthwhile, therefore, to study the location of elaidic acid in the TG molecule throughout the digestive process. This paper describes experiments in which the mode of incorporation into lymph triglycerides of different forms of dietary elaidic acid was determined. The relative degree of incorporation

¹ Presented at the AOCS meeting in Houston, Texas, 1965.